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Abstract

We use simple spectral perturbation theory to show that the positive partial
transpose property is stable under bounded perturbations of the Hamiltonian, for
equilibrium states in infinite dimensions. The result holds provided the temperature
is high enough, or equivalently, provided the perturbation is small enough.

1 Introduction

The positive partial transposition (PPT), or Peres-Horodecki criterion, gives a necessary
condition for a density matrix ρ of a bipartite quantum system SB (‘system-bath’) to
be separable. Namely, if ρ is separable, then the partial transpose (relative to either
subsystem, say B), TBrρs is a positive operator [22, 12]. Equivalently, if ρ is not PPT,
then it must be inseparable, also called entangled. If the dimension of the subsystem
Hilbert spaces are two or three, then the converse statement is also correct [12]. However,
in dimension ě 4, there are states which are PPT and yet entangled. In this situation
the entanglement is called bound. It is called so since one cannot extract from such a
state, pure singlet (entangled) states, which would be needed as a resource for quantum
information purposes. In contrast, if it is possible to extract (by LOCC protocols) from an
entangled mixed state (or many copies thereof), pairs of particles in a pure singlet state,
then the mixed state is said to have ‘distillable’ entanglement [3]. The corresponding
state is said to be distillable. It is shown in [16] (for finite dimensional systems) that if a
state is PPT then it is not distillable. The converse is not true in dimension 3 or higher,
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though. Any possible entanglement in a PPT state is bound. For qubits (dimension 2) it
was shown in [13] that any entangled state is distillable. However, in higher dimensions
there are entangled states with bound entanglement, as shown in [27].

A great feature of the PPT criterion is that in principle, it is easy to apply. To verify
that a given density matrix ρ of a bipartite system is entangled, one ‘simply’ has to
check that the partial transpose TBrρs is not a positive operator. We are addressing the
following question here:

Suppose a density matrix ρ0 is PPT, and consider a modified density matrix ρ “ ρ0`ρ1,
where ρ1 is a perturbation operator. Under what conditions is ρ still PPT?

To investigate the question we first note that since ρ is hermitian (“ selfadjoint) then
so is TBrρs (see also (3.10) below). Thus TBrρs ě 0 if and only if all the eigenvalues of TBrρs

are non-negative. The partial trace is a linear operation, TBrρs “ TBrρ0s ` TBrρ1s. Basic
perturbation theory [17] tells us that the eigenvalues of TBrρs lie within a neighbourhood
of the size }TBrρ1s}8 (operator norm of the perturbation) of the eigenvalues of TBrρ0s.
Since ρ0 is PPT we know that TBrρ0s ě 0. If TBrρ0s has a lowest eigenvalue λ0 ą 0 then
for }TBrρ1s}8 ă λ0 the spectrum of TBrρs is guaranteed to be ě 0, which means that ρ is
PPT.

This straightforward approach breaks down as soon as the dimension is infinite. The
reason is that ρ0 and hence TBrρ0s are Hilbert-Schmidt operators (c.f. (3.9)). In par-
ticular, TBrρ0s is a compact operator and therefore, in the infinite-dimensional case, its
eigenvalues must accumulate at the origin. Consequently, no matter how small we take
}TBrρ1s}8, the simple argument given above does not work.

We show in this paper how one can modify the simple perturbation argument for
equilibrium states, where the perturbation is a bounded interaction term V in the Hamil-
tonian,

ρ0 “
e´βH0

Tre´βH0
, ρ “

e´βpH0`V q

Tre´βpH0`V q
(1.1)

with
H0 “ HA b 1lB ` 1lA b HB.

Thermal states form the cornerstone of equilibrium statistical mechanics. Examining
their quantum properties, one of which is measured by entanglement, is an important
question. That said, the equilibrium setup (1.1) is mathematically quite general. Indeed,
any faithful density matrix1 ρ0 can be written in the form ρ0 “ e´H0{Tre´H0 for some
Hermitian (self-adjoint) H0, and similarly for ρ. Our approach is applicable to any such
ρ0, ρ. In this work, we express the perturbation ρ0 ÞÑ ρ as an interaction term V in
the Hamiltonian because this is physically intuitive. Our main idea is to use the Dyson
expansion to write

e´βpH0`V q
“ e´βH0{2

“

1l ` OpV q
‰

e´βH0{2, (1.2)

1A density matrix is called faithful if zero is not one of its eigenvalues.
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where OpV q is an operator which vanishes for V “ 0. PPT for ρ will then follow provided
TBrOpV qs is small enough such that

1l ` TBrOpV qs ě 0.

By factoring out the operators e´βH0{2 in (1.2) we remove the problem of eigenvalues
accumulating at the origin, as the unperturbed density matrix is effectively replaced by
the operator 1l now, whose spectrum t1u is separated from the origin. The detailed
control of OpV q leading to the wanted bounds involves the size of V as well as the inverse
temperature β. We assume a bound on the Hilbert-Schmidt norm of the imaginary time
evolved interaction operator. Namely, we assume that there are constants a, b, and s˚ ą 0
such that for all 0 ď s ď s˚, we have the bound

}e´sH0V esH0}2 ď aebs.

We then show in Theorem 2.2 that for large enough temperature β ď maxtβ˚, s˚u, the
perturbed state ρ is PPT. The upper bound β˚ on β depends on the constants a, b. If a
is small (say V contains an overall small coupling constant) then β˚ „ lnp1{aq. So the
smaller a is the larger we can take β (the smaller we can take the actual temperature
1{β) for the result to hold. Conversely, if the coupling V is not small (a sizeable) then
the temperature has to be higher for the validity of our derivation.

Literature. The question of separability of thermal equilibrium states has a rich
history. Entanglement is a measure for the degree of their “quantumness”. Intuitively it
is expected that a quantum to classical transition happens at high temperature T , that
is, entanglement disappears for large T . From a quantum information point of view, this
means that only cool enough materials may be used as a quantum resource.

Many works deal with spin (qubit) chains in equilibrium. They analyze how 2-qubit
entanglement along the chain depends on various parameters [1, 11, 28, 29, 30, 19, 31, 10,
4, 21], in particular finding temperature bounds which guarantee entanglement or separa-
bility. In this situation, one can conveniently use concurrence to quanitfy entanglement.
An analysis for two spins of arbitrary length (where concurrence cannot be used as an
entanglement measure) was carried out in [24]. In that work, the validity of the PPT
criterion was linked to properties of the spin correlators. More generally, it was shown
in [20, 23] that for finite dimensional systems, thermal states with respect to any Hamil-
tonian are separable at high enough temperature, T ě Tc, for some critical Tc and that
any interval I Ă p0, Tcq contains a T 1 such that the equilibrium state at temperature T 1

is entangled. A general topological argument, which again works for finite-dimensional
systems, was presented in [9]: The equilibrium density matrix at infinite temperature
T Ñ 8 is proportional to the identity matrix. The latter is a product state (under any
bi-partition of the total system) and it is contained in a “ball” (topological neighbour-
hood) of separable states. As the equilibrium density matrix depends continuously on the
inverse temperature β “ 1{T , the infinite temperature density matrix cannot be trans-
formed into an entangled density matrix by an infinitesimal change of β away from β “ 0.
Hence there must be a critical temperature Tc so that for T ą Tc the state is separable.
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In all the works above, entanglement between finite-dimensional systems is studied.
The advantage of our method is that it is very simple and works in infinite dimensions.
However, we only show that the PPT property holds at high enough temperatures, and
this gives only partial information on the entanglement. Namely, we do not settle the
question of bound entanglement; our result presented here does not show whether there
exists entanglement in the regime where PPT is satisfied. In this sense, our results are
more modest than many of the ones cited above. The presence of bound entanglement in
thermal spin states (finite dimensions) was derived in [25, 5]. The authors of [2] consider
the thermal states of a closed chain of harmonic oscillators and find an explicit expression
for the logartihmic negativity. This allows them to discuss entanglement properties for
this specific infinite-dimensional system. Based on this work, the existence of bound
entanglement in the same system was shown in [6]. A more general approach exhibiting
bound entanglement for infinite-dimensional systems would be valuable.

Finally, it is interesting to note that there are models where entanglement survives ‘at
all temperatures’. This was shown to hold for a mirror in thermal equilibrium interacting
with an electromagnetic field mode in a coherent state [8].

2 PPT criterion & main result

We start out by defining the notions involved in the PPT, or positive partial transpose
criterion and state that criterion below in Theorem 2.2.

Let H be a separable Hilbert space, dimH ď 8. Our main focus will be on the infinite
dimensional case. The norm of a vector |ψy P H is given by } |ψy } “

a

xψ|ψy, where x¨|¨y

is the inner product of H. Let BpHq denote the set of all bounded linear operators on H.
We use the following three norms of operators X P BpHq,

}X}8 “ sup
|ψyPH, }|ψy}“1

}X|ψy}, }X}2 “
`

Tr |X|
2
˘1{2

, }X}1 “ Tr|X|,

where |X| “
?
X:X and X: denotes the adjoint of X. The norms are also called the

operator norm (}X}8), the Hilbert-Schmidt norm (}X}2q and the trace norm (}X}1).
The inequalities }X}8 ď }X}j, j “ 1, 2 are well known. We denote by T2pHq all bounded
operators X such that }X}2 ă 8. These are called the Hilbert-Schmidt operators. T2pHq

is Hilbert space when equipped with the inner product xX, Y y “ Tr pX:Y q. The collection
of all trace class operators in H (operators with finite trace norm) is denoted by T1pHq.
It is a Banach space under the trace norm. Hilbert-Schmidt and trace-class operators are
compact operators.

Let t|enyuně1 be a fixed orthonormal basis of H and let X P BpHq. We define a new
operator T rXs P BpHq by the relation

xem|T rXseny “ xen|Xemy.
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The new operator T rXs is called the transpose of X. Of course, T rXs depends on the
choice of the basis t|enyuně1. One can show that }T rXs}8 “ }X}8, so T is a linear
isometry on BpHq and moreover, T 2 “ 1l.

An operator X P BpHq is said to be positive, written X ě 0, if xψ|Xψy ě 0 for all
|ψy P H. We have the following equivalence: X ě 0 if and only if X “ X: and the
spectrum of X satisfies specpXq Ă r0,8q. A density matrix is an operator ρ P T1pHq such
that ρ ě 0 and Trρ “ 1.

Composite quantum systems are described by tensor products of Hilbert spaces. Let
HA and HB be two separable Hilbert spaces and set

HAB “ HA b HB.

We say that a density matrix ρ on the bipartite Hilbert space HAB is separable if it can
be approximated in trace norm by a convex combination of product states [26, 7].2 That
is, ρ is separable if for n P N, there are density matrices ρAn , ρ

B
n on HA, HB, respectively,

and probabilities 0 ď pn ď 1,
ř

ně1 pn “ 1, such that

ρ “
ÿ

ně1

pn ρ
A
n b ρBn , (2.1)

where the series converges in the } ¨ }1 norm of HAB. If ρ is not separable, then it is
called entangled. Equivalently, the term inseparable is used [16]. An extraordinarily
useful criterion to check that a state is entangled is the PPT (positive partial transpose,
or Peres-Horodecki) criterion, given in Theorem 2.1 below. Before stating it, we define
the notion of partial transposition.

The partial transposition is the operation 1lbT acting on BpHABq “ BpHAq bBpHBq,
where T is the transposition operator on BpHBq, relative to a fixed basis of HB, as
introduced above. For X P BpHABq, the operator p1lbT qX is called the partial transpose
of X, also denoted by

TBrXs “ p1l b T qX.

A density matrix ρ on HA b HB satisfying TBrρs ě 0 is said to be positive partial
transpose, for short PPT. The following result is the famous PPT, or Peres-Horodecki
criterion for separability, which originated in [22, 12].

Theorem 2.1 (PPT criterion) Let ρ be a density matrix on the bipartite Hilbert space
H “ HA b HB. If ρ is separable then ρ is PPT.

As discussed in the introduction, deriving the PPT property using perturbation theory
is not immediate, in the infinite dimensional setting. However, for perturbations stem-
ming from an interaction term in the Hamiltonian of an uncoupled bipartite equilibrium

2The word ‘separable’ is used for states and, in a different context, for Hilbert spaces – a separable
Hilbert space is one which has a countable orthonormal basis. In the original paper [26], separable states
are called classically correlated states.
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state, one can still use simple pertrubation theory to infer the PPT property. Let the
Hamiltonian of a bipartite system, with Hilbert space HA b HB, be given by

HAB “ H0 ` V, (2.2)

H0 “ HA ` HB, (2.3)

where HA ” HA b 1lB and HB ” 1l b HB are individual (hermitian) Hamiltonians and V
is a hermitian interaction operator. It is assumed that for β ą 0,

TrAB e
´βH0 ă 8, TrAB e

´βHAB ă 8.3 (2.4)

The equilibrium state at inverse temperature β is the Gibbs state with density matrix

ρβ “
e´βHAB

Tr e´βHAB
. (2.5)

To carry out a rigorous proof, we make the following assumption: There are constants
s˚ ą 0 and a, b ě 0 such that for 0 ď s ď s˚,

}e´sH0V esH0}2 ď aebs. (2.6)

Our main result is

Theorem 2.2 Suppose β is small enough,

0 ă β ď maxts˚, β˚u, where β˚ ”
2

b
ln
“

1 `
b

a

ln 2

2

‰

. (2.7)

Then the equilibrium state ρβ, (2.5), is PPT.

The theorem says that if the temperature 1{β is large enough, then the coupled equi-
librium state ρβ is PPT.

Discussion of Theorem 2.2.

(D1) Weak coupling vs. low temperature. In the case where the interaction operator
carries an overall coupling constant λ, that is H “ H0 ` λV , the constant a in (2.6) is
multiplied by |λ|. So the upper bound β˚ in Theorem 2.2 is

β˚ “
2

b
ln
“

1 `
1

|λ|

b

a

ln 2

2
s.

For fixed a, b we have β˚ „ ln |λ|´1 for small λ. This means that taking low enough tem-
peratures (β large enough) is equivalent to taking the coupling λ small, for the condition
of Theorem 2.2 to hold.

(D2) Examples for the validity of (2.6).

3If dimHA,B ă 8, then (2.4) is automatically true. If dimHAB “ 8, then Tr e´βH ă 8 (for H “ H0

or H “ HAB) is the same as saying that all the eigenvalues λn ą 0 of e´βH are finitely degenerate and
satisfy

ř

n λn ă 8; in particular, λn Ñ 0 as n Ñ 8. Modulo a global additive shift, the energy spectrum
of H is given by En “ ´ 1

β lnpλnq and so En Ñ 8, that is, H must be unbounded.

6

Page 6 of 15Canadian Journal of Physics (Author's Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
M

E
M

O
R

IA
L

 U
N

IV
 O

F 
N

E
W

FO
U

N
D

L
A

N
D

 o
n 

07
/3

1/
23

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



(1) If dimHA, dimHB ă 8, then we can take a “ }V }2 and b “ }H0}8. (Note, by
a simple translation in energy which does not affect the equilibrium state, we can
always assume that H0 ě 0.)

As a concrete example, we consider two interacting qubits A and B, with

HA “ 1
2
ωAσz, HB “ 1

2
ωBσz, V “ λσx b σx,

where ωA, ωB ą 0 and λ P R are constants and σx, σz are Pauli matrices, with
σx “ |´yx`| ` |`yx´|. Then

e´sH0V esH0 “ λ
`

e´sωA |`yx´| ` esωA |´yx`|
˘

b
`

e´sωB |`yx´| ` esωB |´yx`|
˘

and one calculates

}e´sH0V esH0}2 “ 2λ
a

coshp2sωAq coshp2sωBq ď 2λespωA`ωBq.

Thus (2.6) is satisfied for all s ě 0 with a “ 2λ and b “ ωA ` ωB.

(2) Denote the energy spectrum of H0 by Ej, j ě 1. We consider interaction operators
V having the following property: Starting from any Ej, V only makes transitions
to finitely many levels Ej˘ℓ, where ℓ P t0, 1, . . . , Lju for some Lj ě 0. Written
in matrix form, V is then a matrix whose nonzero entries on row j lie within a
neighbourhood of size Lj around the diagonal entry,

V “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚

˚ ˚ ˚ ˚

. . .

˚ ˚ ˚

˚ ˚ ˚ ˚

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.8)

In other words,

V “
ÿ

jě1

Lj
ÿ

ℓ“1

Vj,j`ℓ |ϕjyxϕj`ℓ| ` h.c., (2.9)

where Vj,k “ xϕj|V ϕky. Then one easily sees that

}e´sH0V esH0}2 ď 2
ÿ

jě1

Lj
ÿ

ℓ“1

e|s||Ej´Ej`ℓ|
|Vj,j`ℓ|.

7
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So we have the bound (2.6) for all s ě 0, with

a “ 2
ÿ

jě1

Lj
ÿ

ℓ“1

|Vj,j`ℓ|, b “ sup
jě1

max
1ďℓďLj

|Ej ´ Ej`ℓ|. (2.10)

For a to be finite, we need Vj,j`ℓ Ñ 0 with increasing j, meaning that the interaction
has a high energy cutoff. This is a physically reasonable condition.

As an explicit example, we consider the Jaynes-Cummings type Hamiltonian de-
scribing an atom (2 level system) interacting with a radiation mode (harmonic
oscillator), described by the Hamiltonians

HA “ ωσz, HB “ Ωa:a, V “ χEpσ` b a ` σ´ b a:
qχE. (2.11)

Here, ω,Ω ą 0 and σ˘ are the raising and lowering operators of the atom. The
χE is an energy cutoff, namely the projection operator onto the eigenspace of H0 “

HA`HB associated to eigenvalues ď E, where E ą 0 is any fixed number. Consider
for simplicity of the presentation that ω ă 1

2
Ω. Then the eigenvalues of H0, denoted

in increasing order as E1 ă E2 ă E3 ă ¨ ¨ ¨ , are given by E2n “ pn ´ 1qΩ ` ω
and E2n`1 “ nΩ ´ ω. The associated eigenvectors are |ψ2ny “ |`, n ´ 1y and
|ψ2n`1y “ |´, ny, where ˘ in the ket refers to the ground and excited state of the
atom and n in the ket refers to the level of excitation of the oscillator. One readily
checks that the interaction operator V can only make transitions Ek Ñ Eℓ with
|k´ℓ| ď 2. In other words, Lj “ 2 in the above language. As the interaction operator
V is essentially proportional to the square root of the oscillator number operator, we
have |Vj,j`ℓ| ď 2

?
j ` ℓ. Using this in (2.10) yields the bounds a ď 8

řJE
j“1

?
j ` 2

and b ď Ω, where JE is the largest integer satisfying EJE ď E. It is interesting
to note that for the Jaynes-Cummings model (2.11) without the cutoff χE, the
equilibrium state is not separable for any (nonzero) temperature, as was shown in
[18].

(3) A popular open system is an oscillator (system a, a:) interacting with N other
oscillators (bath bj, b

:

j) through the Hamiltonian

H 1
“ H0 `

N
ÿ

j“1

`

gja
:bj ` h.c.

˘

, H0 “ ω0a
:a `

N
ÿ

j“1

ωjb
:

jbj, (2.12)

where ω0, ωj ą 0, the gj P C are coupling coefficients. A related model is the spin
Boson model (with finitely many oscillators) and its generalizations, in which the
system oscillator is replaced by a finite L-level system. Our method applies to that
model as well. The interaction in (2.12) is not a bounded operator so Theorem 2.2
does not apply without modifications.
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One way to make the interaction bounded is to exclude processes involving energies
beyond some cutoff Ω ą 0 . This amounts to setting

V “ χH0ďΩ

´

N
ÿ

j“1

gja
:bj ` h.c.

¯

χH0ďΩ, (2.13)

where χH0ďΩ is the spectral projection of H0 onto the eigenspaces with spectral
values contained in the interval r0,Ωs. We then consider the Hamiltonian

H “ H0 ` V,

where H0 and V are given in (2.12) and (2.13), respectively. We show in Section
3.2 that

}e´sH0V esH0}2 ď 2}g}2

?
NpΩ{ωmin ` 1q

pN`3q{2e|s|∆ω, (2.14)

where

ωmin “ min
0ďjďN

ωj, ∆ω “ max
1ďjďN

|ω0 ´ ωj|, }g}2 “

´

N
ÿ

j“1

|gj|
2
¯1{2

.

The condition (2.6) holds with

a “ 2}g}2

?
NpΩ{ωmin ` 1q

pN`3q{2, b “ ∆ω.

The presence of low lying modes (ωmin small) increases the value of a, and hence
diminishes β˚, (2.7). This means that if some of the oscillators have low frequencies,
then the temperature 1{β must be chosen large in order for Theorem 2.2 to hold.

3 Proofs

3.1 Proof of Theorem 2.2

Using the Dyson series we have

e´βHAB “
“

1l ` Dpβq
‰

e´βH0 (3.1)

with

Dpβq “
ÿ

ně1

ż β

0

ds1

ż s1

0

ds2 ¨ ¨ ¨

ż sn´1

0

dsn V psnq ¨ ¨ ¨V ps2qV ps1q (3.2)

and where
V psq “ e´sH0V esH0 . (3.3)

9
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Under the condition (2.6), the series (3.2) converges in the Hilbert-Schmidt norm and

}Dpβq}2 ď
ÿ

ně1

an
ż β

0

ds1

ż s1

0

ds2 ¨ ¨ ¨

ż sn´1

0

dsn e
bps1`...`snq

“
ÿ

ně1

an

n!

“

ż β

0

ebsds
‰n

“ exp
“

a
eβb ´ 1

b

‰

´ 1. (3.4)

We use (3.1) to arrive at

e´βHAB “
“

e´βHAB{2
‰:
e´βHAB{2

“ e´βH0{2
“

1l ` Dpβ{2q
:
‰“

1l ` Dpβ{2q
‰

e´βH0{2

“ e´βH0{2
“

1l ` F pβq
‰

e´βH0{2, (3.5)

where
F pβq “ Dpβ{2q

:
` Dpβ{2q ` Dpβ{2q

:Dpβ{2q. (3.6)

For any Hilbert-Schmidt operator X, we have

}X:
}2 “ }X}2 and }X:X}2 ď }X}2}X}8 ď }X}

2
2.

Hence it follows from (3.4), (3.6) that

}F pβq}2 ď }Dpβ{2q}2
`

2 ` }Dpβ{2q}2
˘

ď exp
“

2 a
eβb{2 ´ 1

b

‰

´ 1. (3.7)

Denote by TB the linear operator acting on operators of HAB, which takes the partial
transpose of the system B. More precisely, let |eky and |fℓy be orthonormal bases of HA

and HB and let X be a bounded linear operator acting on HAB “ HAbHB. Then TBrXs

is the linear operator on HAB, defined by its matrix elements

xek b fℓ|TBrXs|em b fny “ xek b fn|X|em b fℓy. (3.8)

The map TB depends on the choice of the basis of HB – which we consider to be arbitrary,
but fixed. The map TB generally does not preserve the } ¨ }8 norm of operators, but it
leaves the Hilbert-Schmidt norm invariant,4

}TBrXs}2 “ }X}2, X P T2pHABq. (3.9)

Moreover, we have
pTBrXsq

:
“ TBrX:

s, (3.10)

so if X is hermitian, then so is TBrXs and vice versa.

4To see that (3.9) holds, one notices that TB is (hermitian) selfadjoint with respect to the inner product
of T2pHABq, namely for all X,Y P T2pHABq, we have xTBrXs|Y y “ xX|TBrY sy. Then (3.9) follows by
expressing the norm via the inner product and using that TBrTBrXss “ X.

10
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Let XA, YA and XB, YB be operators on HA and HB, respectively, and let Z be an
operator on HAB. Then one readily sees that

TB
“

pXA b XBqZpYA b YBq
‰

“ pXA b T rYBsqTBrZs pYA b T rXBsq,

where T r¨s is the transpose in the given, fixed basis of HB. As e´βH0 “ e´βHA b e´βHB ,
one obtains by applying TB to (3.5) that

TBre´βHAB s “
␣

e´βHA{2
b T re´βHB{2

s
(

TB
“

1l ` F pβq
‰ ␣

e´βHA{2
b T re´βHB{2

s
(

. (3.11)

The operator e´βHA{2bT re´βHB{2s is positive and invertible, and it follows from 3.11 that5

TBre´βHAB s ě 0 ðñ TB
“

1l ` F pβq
‰

ě 0. (3.12)

Next, TBr1l ` F pβqs “ 1l ` TBrF pβqs. As TBrF pβqs is hermitian, the spectrum of 1l `

TBrF pβqs is real and we have the bound

TBr1l ` F pβqs ě 1l ´ }TBrF pβqs}8 ě 1l ´ }TBrF pβqs}2 “ 1l ´ }F pβq}2. (3.13)

Combining this with (3.7) we obtain

TBr1l ` F pβqs ě 2 ´ exp
“

2a
eβb{2 ´ 1

b

‰

. (3.14)

The right hand side is ě 0 provided

β ď
2

b
ln
“

1 `
b

a

ln 2

2

‰

. (3.15)

It follows that under the condition (3.15), the operator TBre´βHAB s is PPT. This completes
the proof of Theorem 2.2. l

3.2 Proof of (2.14)

The eigenvectors of H0 are |ny ” |n0, n1, . . . , nNy, where n “ pn0, n1, . . . , nNq and n0, nj P

N are the occupation- or excitation numbers of the oscillators. The associated eigenvalues
are

Epnq “ ω0n0 `

N
ÿ

j“1

ωjnj.

5The implication ðù in (3.12) is immediate by (3.11). In infinite dimensions, ùñ needs to be shown
with some care, since even though Q ” e´βHA b T re´βHB s is a positive bounded operator, its inverse,
Q´1 ” eβHA b T reβHB s is an unbounded operator. Suppose then that Y ” TBre´βHAB s ě 0. We want
to show that X ” TBr1l ` F pβqs ě 0. Let Pn be the spectral projection of Q on the subspace where
Q ě 1{n. Then PnY Pn “ PnQXQPn and, as Q´1Pn is bounded, Q´1PnY PnQ

´1 “ PnXPn. By the
positivity of Y and hence that of Q´1PnY PnQ

´1, we have xf |PnXPn|fy ě 0 for any vector |fy. Since
Pn|fy Ñ |fy as n Ñ 8 it follows that xf |X|fy ě 0 for any vector |fy. Hence X ě 0.
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We calculate

}e´sH0V esH0}
2
2 “ Tr

`

e´sH0V e2sH0V e´sH0
˘

“
ÿ

n

e´2sEpnq
xn|V e2sH0V |ny

“
ÿ

n,m

e´2srEpnq´Epmqs
|xn|V |my|

2. (3.16)

The operator a:bj acts on an eigenstate as a:bj|my “
a

pm0 ` 1qmj|m
1y, where m1 is

obtained form m by reducing mj by one and increasing m0 by one. It follows that
xn|a:bj|my “

a

pm0 ` 1qmjδn0,m0`1δnj ,mj´1

ś

ℓ‰0,j δnℓ,mℓ
(Kronecker deltas). Note also

that χH0ďΩ|my “ χEpmqďΩ|my. We then estimate the matrix element as

|xn|V |my|
2

ď χEpmqďΩ χEpnqďΩ

´

N
ÿ

j“1

|gj|
␣

xn|a:bj|my ` xn|ab:

j|my
(

¯2

ď 2χEpmqďΩ χEpnqďΩ

´

N
ÿ

j“1

|gj|
2
¯´

N
ÿ

j“1

xn|a:bj|my
2

` xn|ab:

j|my
2
¯

,

(3.17)

where we used the Cauchy-Schwarz inequality for sums and that pA`Bq2 ď 2pA2 `B2q.
Next,

N
ÿ

j“1

xn|a:bj|my
2

` xn|ab:

j|my
2

“

N
ÿ

j“1

pm0 ` 1qmjxn|m1
jy ` m0pmj ` 1qxn|m2

jy

ď

N
ÿ

j“1

pm0 ` 1qpmj ` 1q
`

δn,m1
j

` δn,m2
j

˘

(3.18)

where m1
j is m with m0 replaced by m0 ` 1 and mj replaced by mj ´ 1 and similarly

for m2
j . Here, δn,k takes the value 1 if m “ k and 0 otherwise. In view of (3.16)

we need to multiply with e´2srEpnq´Epmqs. Either delta function selects values such that
|Epnq´Epmq| “ |ω0´ωj|; one excitation is transferred, and so e´2srEpnq´Epmqs ď e2|s||ω0´ωj |.
Also, the summation over n in (3.16) disappears due to the presence of the delta functions.
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We combine (3.16)-(3.18) to obtain

}e´sH0V esH0}
2
2 ď 2

`

N
ÿ

j“1

|gj|
2
˘

N
ÿ

j“1

e2|s||ω0´ωj |

ˆ
ÿ

m:EpmqďΩ

pm0 ` 1qpmj ` 1q
ÿ

n:EpnqďΩ

pδn,m1
j

` δn,m2
j
q

ď 4
`

N
ÿ

j“1

|gj|
2
˘

N
ÿ

j“1

e2|s||ω0´ωj |
ÿ

m:EpmqďΩ

pm0 ` 1qpmj ` 1q

ď 4
`

N
ÿ

j“1

|gj|
2
˘

Ne2|s|∆ω
pΩ{ωmin ` 1q

2
ÿ

m:EpmqďΩ

1, (3.19)

where ωmin “ min0ďjďN ωj and ∆ω “ max1ďjďN |ω0 ´ ωj|. We have used that in the
summation, ωkmk ď Ω for all k “ 0, . . . , N . An easy (but rough) upper bound for the
last sum in (3.19) is obtained as follows. That sum counts the number of indices m such
that Epmq ď Ω and we write it as

ÿ

m:EpmqďΩ

1 “
ÿ

m0ě0

ÿ

m1ě0

¨ ¨ ¨
ÿ

mNě0

χřN
j“0 ωjmjďΩpmq,

where χřN
j“0 ωjmjďΩpmq is the function of m which equals one if the inequality is satisfied

and zero else. In each one of the N ` 1 sums, we have ωjmj ď Ω, or mj ď Ω{ωmin. Let
M “ tΩ{ωminu be the largest integer smaller than or equal to Ω{ωmin. Hence

ÿ

m:EpmqďΩ

1 “

M
ÿ

m0“0

¨ ¨ ¨

M
ÿ

mN“0

χřN
j“0 ωjmjďΩpmq

ď

M
ÿ

m0“0

¨ ¨ ¨

M
ÿ

mN“0

1 “

´

M
ÿ

m“0

1
¯N`1

“ pM ` 1q
N`1

ď pΩ{ωmin ` 1q
N`1.

Using this estimate in (3.19) we conclude that

}e´sH0V esH0}2 ď 2
?
NpΩ{ωmin ` 1q

pN`3q{2
´

N
ÿ

j“1

|gj|
2
¯1{2

e|s|∆ω. (3.20)

This completes the proof of (2.14), l

Acknowledgements. The work of both athours was supported by a Discovery Grant
from NSERC, the National Sciences and Engineering Research Council of Canada. The
authors are grateful to two anonymous referees for carefully reviewing this work and
providing constructive feedback.

Data availability. Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Competing interests. The authors declare that there are no competing interests.

13

Page 13 of 15 Canadian Journal of Physics (Author's Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
M

E
M

O
R

IA
L

 U
N

IV
 O

F 
N

E
W

FO
U

N
D

L
A

N
D

 o
n 

07
/3

1/
23

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



References

[1] M.C. Arnesen, S. Bose, V. Vedral: Natural Thermal and Magnetic Entanglement in
the 1D Heisenberg Model, Phys. Rev. Lett. 87, 017901 (2001)

[2] K. Audenaert, J. Eisert, M. B. Plenio, R.F. Werner: Entanglement properties of the
harmonic chain, Phys. Rev. A. 66, 042327 (2002)

[3] C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, W.K. Wootters:
Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,
Phys. Rev. Lett. 76, 722 (1996)

[4] G.K. Brennen, S.S. Bullock: Stability of global entanglement in thermal states of spin
chains, Phys. Rev. A 70, 052303 (2004)

[5] D. Cavalcanti, L. Aolita, A. Ferraro, A, Garcia-Saez, A. Acin: Macroscopic bound
entanglement in thermal graph states, New J. Phys. 12 025011 (2010)

[6] D. Cavalcanti, A. Ferraro, A. Garcia-Saez, A. Acin: Distillable entanglement and area
laws in spin and harmonic-oscillator systems, Phys. Rev. 78, 012335 (2008)

[7] R. Clifton, H. Halvorson: Bipartite-mixed-states of infinite-dimensional systems are
generically nonseparable, Phys. Rev. A 61, 012108 (1999)

[8] A. Ferreira, A. Guerreiro, V. Vedral: Macroscopic Thermal Entanglement Due to
Radiation Pressure, Phys. Rev. Lett. 96, 060407 (2006)

[9] B.C. Fine, F. Mintert, A. Buchleitner: Equilibrium entanglement vanishes at finite
temperature, Phys. Rev. B 71 153105 (2005)
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[21] D. Panatè, R. Fazio, L. Amico: Bound entanglement in the XY model, New J. Phys.
9 322 (2007)

[22] A. Peres: Separability Criterion for Density Matrices, Phys. Rev. Lett. 76, 1413
(1996)

[23] G. A. Raggio: Spectral conditions on the state of a composite quantum system im-
plying its separability, J. Phys. A: Math. Gen. 39, 617 (2006)

[24] J. Schliemann: Entanglement in SUp2q-invariant quantum spin systems, Phys. Rev.
A 68, 012309 (2003)
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